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Kinetic s tudies  of coal gasification and  pyrolysis a r e  important in the 
design and operation of gasification plants. In many of these studies,  weight 
loss of a coal sample is  continuously recordod, with a TGA for example, to 
produce conversion ve r sus  time data f o r  a specific set  of experimental 
condititrns. Theoretical and empirical models are frequent ly  used to represent  
those primary kinetic: data. With a proper  representation of t he  conversion 
data, other secondary kinetic data  such as half-life and reactivity a re  
evaluated. Characterization of coal, development of proper reaction rate 
models and estimation of its activation ene rgy  follow. 

Mahajan e t  al. (1978) found that  when the char  conversion is  plotted a s  a 
function of H dimensionless time T, defined by T = t / t l /2 ,  where t1/2 ifi the 
half-life of the reaction, gasification data for widely different experimental 
conditions can bo represented by a single x ve r sus  T curve. This unificatiori 
approach has been used and confirmed by a number of researchers,  e.g., 
Kasnoka et  al. (1985) and Peng el. HI. (1986). 

[n this work w e  use the  unification approach a s  the basis to develop a 
thoore:tical relation between half-life and average reactivity which is then 
verified experimentally. The relation in t u r n  leads to the development of a 
simple end practical alternative for estimating the appa ren t  activation energies 
of coal gasification a n d  o the r  types of reactions. 

THEORY 

Chtlr conversion x depends on experiniental variables such ax temperature, 
pressure,  etc., and it increases with gasification time. This may be 
represented symbolically as 

x - fo (T, P, ..... , t) (1) 

For p a t h  gnsificution run ,  w i t h  vnriribles other  than t being fixed, reHearchers 
usrially f i t  to the conversion-versus-time data  ra te  expressions of the form 

Rc = dx/di F(x) (2) 

where Rc is the c h a r  reactivity and x the  cha r  conversion. 

Accnrding to t h e  unification approach, whon the  data s e t s  are normalized 
by replacing t by T ,  a single x ve r sus  T curve  represents  all the  data, 
irrespective of t he  o the r  experimental variables, reacting media and coal types. 
In other words, Eq. (1) becomes 
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x = f(T)( ( 3 )  

where f is the functional form of the  unification curve. In this article, w e  
show that  this curve can be reduced even fur ther ,  into a universal value, 
through the following discussion: 

Eq. (3) may alternatively be presented a s  

T g(X). 

The above two equations a r e  mathematical statements of the unification 
concept. From both equations, 

& / d r  - f’(s) - f’(g(x,} : G(x) (5) 

Thus, dx/dr, the  normalized reactivity is a function of conversion alone, and 
by averaging this reactivity over  the  ent i re  conversion range, we remove t h e  
dependence of the normalized curve  on conversion a s  well. Hence, if w e  
define average normalized reactivity 11, as 

then, Ru is a universal constant. 

Similar to Eq. (6), the  average reactivity for a particular gtasification run - 
Rc, is  

(7) 1 I - -  nc = dx/dt, 2 I (dx/dt)dx = I ~ ( x ) d x  
0 0 

which, a s  shown above, is a constant quant i ty  unique 1.0 each run .  Thus, from 
Eqs. (6)-(7) and the definition of T, 

Therefore, we have obtained a simple relation which s ta tes  tha t  Rc i s  inversely 
proportional to t]/2 with Rll a s  the proportionality constant. 

In  the kinetic s tudies  of coal gasification and pyrolysis, often the 
activation energy is estimated f r o m  a n  Arrhenius plot of initial reactivity %,, 
i.e., the reactivity a t  zero conversion, or half-life reactivity %,1/2, Le., 
reactivity a t  50% conversion. In some cases, ra te  constants k a r e  obtained by 
fitting a model to the data, and activation energy estimated from a n  Arrhenius 
plot of the rate consiants. Here, instead, let us  define a n  average activation 
energy E, based on Rc by t h e  following Arrhenius relation: 

This, when combined with Eq. (8), can be rearranged to ge t  
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Hence a Flot of tn(t1/2) v e r s u s  (1/T) should yield a s t ra ight  line with a slope 
- equal to Ec/R. In o the r  words, Eq. (10) provides a simple means of estiniating 
E, directly f r o m  t h e  t1/2 da t a  alone. 

EXPERIMENTAI. 

Kinetic s tud ie s  of char-steam reaction of North Dakota lignite were 
conducted with a TGA apparatus  (Peng et al., 1986) at p re s su res  1 a t m  and 7.8 
a tm,  in the temperature r ange  of 800 'to 1200'C. Tho mean particle size of 
the coal sample w a s  178 microns and steam was  in excess. The cha r s  were 
generated "in-situ'' b y  devolatilieation in a stearn-nitrogen atmosphere, and 
gasified in t h e  s a m e  environment without interrupt ion (Peng et al., 1986). The 
reaction w a s  allowed to go to completion. The weight loss of t he  sample w a s  
continuously recorded on a microcomputer and  analyzed. More details of our 
s tudy  will be availeblt: later (Raghunathm). 

RESULTS AND DISCUSSION 

Conversion v e r s u s  t h e  data were obtained for  eleven gasificntion r u n s  at 
both pressures.  The data  are plotted as x ver sus  T in Fig. 1 and the 
unification approonh is seen to be valid for  o u r  dHtR. For each of t h w e  runs,  
various two-parameter ra te  models f r o m  l i terature (Johnson, 1979; Simona, 1979; 
Bhatia & IJerlmiitter, 1980; Gnvnlas, 1980; Kasaoka e t  al., 1985) a r e  fitted, and 
from the model that  best  f i ts  the data,  R, is  calculated. Using those average 
reactivity data,  we have plotted (l/&) ve r sus  t i12 in Fig. 2. Remarkably, 
they form a near perfect  s t ra ight  line passing through the origin with a 
correlation coefficient of 0.997 when fitted by tho method of least squares,  
t hus  confirming t h e  relation represented by Eq. (8). From the slope, the 
value of Ru is 0.385. 

i n  Fig. 3, i n ( t l / 2 j  and In(Rc) are plotted ve r sus  (1/T) for both pressures.  
A t  1 atm, the plots a r e  linear over tho ent i re  temperature rangeLand, when 
calculated from the  slope, the I?, values yield 61.1 kJ/mole for Ec, whereas 
f r o m  the t i12 data,  Bc is 62.8 kJ/mole. Clearly the values a r e  very close. 
For thc same runs ,  Arrhenius plots of Hco and Rc,1/2 yield activation energies 
of 64.5 and 60.8 kJ/mole, respectively. 

For our experiments at 7.8 a tm,  the Arrhonius plot of average reactivity in 
Fig. 3 indicates the presence of two different controlling regimes: (1) between 
10OO'C: find IZOO'C, where t h e  activation energy i s  nearly zero and (2)  between 
800'C and IOOO'C, where a non-zero activation ene rgy  can be defined. The 
half-life data plotted in  tho same f igure ig seen to indicate this  t rend j u s t  as 
well. At this  pressure,  in the temperature range 800-1000'C, the R, values 
yield 43.6 kJ/mole for E,, and the t i12 values yield 43.0 kJ/mole. Again, the 
values are close. From the Rc0 and Rc,1(2 values, the activation energies 
estimated are 44.4 and  43.5 kJ/mole, respectively. Discussions about the type 
Of controlling mechanisms involved are beyond the scope of this article, and 
will be  reported elsewhere. 
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O u r  resul ts  clearly indicnte that,  from the half-life data  alone, (1) if t he re  
is a shift  in the controlling mechanism in the temperature range, it can be 
detected by  o u r  method as well, and (2) t h e  corresponding activation energy 
can also be estimated with reasonable accuracy. 

Activation energy values are  reported in  l i terature for  various gasification 
systems, evaluated through different methods. W e  have used the above 
approach to calculate the Ec vnlucs from their  half-life data  alone and Table 1 
shows the comparison. We did not test. the validity of unificxtion theory or 
Eq. (8) with their  data, but  the Ec values so obtained a r e  in good agreement 
with their  reported values of activation energy. I t  is  worth noting that  the 
l i terature data shown in the table cover a wide variety of c h a r s  and represent  
different methods of estimating activation energy. 

Hence, our resul ts  indicate that. half-lifo data a t  different te~nperat i i res  
alone are sufficient to estimate the apparent  activation ene rgy  of coal 
gasification reactions. This would eliminate the usually tedious and inaccurate! 
procedures of evaluating the derivative of x( t )  associated with the  estimation 
of reactivity and thus  activation energy. Although experimental verificfition is  
based on coal gasification reactions, t h i s  method is expected to  b e  applicable 
to other types of gas-solid ronctions, e.g., oil shales retorting, and is 
certainly applicable to any  reaction systems which satisfy the unification 
theory represented by I.:qs. (3) and ( 4 ) .  
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NOTATION 

A 
- 
Ec 

f’(T) 

k 

RC 

Rccl 

Rc,1/2 

RC 

RU 

- 

prcexponent ia l  fac:tor i n  Arrhenius r e l a t ion  

averagr: act ivat ion enc’rgy 

df ( r ) /d r  

ra te  constant 

char reactivity 

initial reactivity 

half-life reactivity 

average char  reactivity 

average normalized char  reactivity, a universal  constant 
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t time 

t i12  ha l f - l i f e  of n react ion 

T react  ion twnperat.ure 

X char conversion 

T normalized t . i m e ,  t / t l / Z  
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Table 1 

Act iv .  E n e r u J / E J - )  from 

Source Char Medium Rco Hc,1/2 k t1/2 

Our Data 

Peng et  
a l .  (1986) 

Debelak et. 
a l .  (1984) 

Chin et  
a l .  (1983) 

Schmal et 
a]. (1982) 

Schmal et  
al .  (1983) 

Guzman and 
Wolf (1982) 

I i gni t e 

l i g n i  t,e 

bitum. 

subbitum. 

l i g n i t e  

b .i 1. um . 
subbitum. 

l i g n i t e  

subbi tum. 

brown coal 
ac t iv .  C 

bit.um. 
ac t iv .  C 

subbi t.um. 

subbi t.um. 

catalyzed 
ac t iv .  C 

catalyzed 
bitum. 

steam 64.5 

stnrm 44.4 

steam 56.8 

steam 60.6 

steam 84.7 

steam 62.6 

si  eam 82.4 

steam 98.5 

_ _ _  co2 

___ steam 

___ steam 

_ _ _  steam 

steam 

___ steam 

60.8 

43.5 

36.5 

57.2 

79.7 

47.6 

54.1 

67.4 

_ _ _  

_ _ _  

62.8 

43.0 

43.9 

61.7 

91.1 

48.4 

55.8 

75.1 

150.0 158.6 

__ - 

_ _ _  
. _ _  

_ _  - 

___ 
. __ 

__ . 

_ _  - 

125.6 129.4 

149.1 149.5 

165.4 161.6 

163.3 147.4 

259.6 250.7 

242.8 239.8 



I .c 

0.e 

0.6 
X 

0.4 

0.2 

0 

P (atm) 

0 1.0 
A 11 

' I  

0 " 

v )' 
0 7.8 
0 " 

A 'J 

+ J J  

0 ') 

0 J' 

T('C) 

800 
1000 
1000 
i100 
1200 
800 
900 

1000 
1000 
1100 
1200 

1 I I I 1 1 
0.5 I eo I *5 2.0 2*5 3.0 

T 
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